Advertisements
Advertisements
Question
Find the following product:
Solution
Given\[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] as
\[\left( \frac{3}{x} - 2 x^2 \right)\left( \left( \frac{3}{x} \right)^2 + \left( 2 x^2 \right)^2 - \left( \frac{3}{x} \right)\left( 2 x^2 \right) \right)\]
\[ = \left( \frac{3}{x} \right)^3 - \left( 2 x^2 \right)^3 \]
\[ = \left( \frac{3}{x} \right)\left( \frac{3}{x} \right)\left( \frac{3}{x} \right) - \left( 2 x^2 \right)\left( 2 x^2 \right)\left( 2 x^2 \right)\]
\[ = \frac{27}{x^3} - 8 x^6\]
Hence the Product value of \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] is `27/x^3 - 8x^6`.
APPEARS IN
RELATED QUESTIONS
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Evaluate the following using suitable identity:
(102)3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Expand the following:
(a + 4) (a + 7)
Evaluate the following without multiplying:
(103)2
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Using suitable identity, evaluate the following:
9992
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).