Advertisements
Advertisements
Question
Find the following product:
Solution
Given `(2/x + 3x) (4/x^2 + 9x^2 - 6)`
We shall use the identity, `a^3+ b^3 = (a+b) (a^2 + b^2 - ab)`
We can rearrange the `(2/x + 3x) (4/x^3 + 9x^2 - 6)`as
`= (2/x + 3x)[(2/x)^2 + (3x)^2 - (2/x) (3x)]`
` = (2/x^3) + (3x)^3`
`= (2/x) xx (2/x) xx(2/x) + (3x) xx (3x) xx (3x)`
`= 8/x^3 + 27x^3`
Hence the Product value of `(2/x + 3x) (4/x^2 + 9x^2 - 6)`is `8/x^3 + 27x^3`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Write the following cube in expanded form:
`[3/2x+1]^3`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.