Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given `(2/x + 3x) (4/x^2 + 9x^2 - 6)`
We shall use the identity, `a^3+ b^3 = (a+b) (a^2 + b^2 - ab)`
We can rearrange the `(2/x + 3x) (4/x^3 + 9x^2 - 6)`as
`= (2/x + 3x)[(2/x)^2 + (3x)^2 - (2/x) (3x)]`
` = (2/x^3) + (3x)^3`
`= (2/x) xx (2/x) xx(2/x) + (3x) xx (3x) xx (3x)`
`= 8/x^3 + 27x^3`
Hence the Product value of `(2/x + 3x) (4/x^2 + 9x^2 - 6)`is `8/x^3 + 27x^3`.
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Evaluate the following using identities:
`(2x+ 1/x)^2`
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
Find the following product:
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If a + b = 7 and ab = 12, find the value of a2 + b2
Find the square of `(3a)/(2b) - (2b)/(3a)`.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: (9 − y) (7 + y)
Expand the following:
(m + 8) (m - 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
4x2 + 20x + 25
Expand the following:
(4a – b + 2c)2
Expand the following:
(3a – 2b)3