Advertisements
Advertisements
प्रश्न
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
उत्तर
Given \[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
We shall use the identity `a^3 + b^3 = (a+b) (a^2 = ab + b^2)`,
we can rearrange the `(3 + 5/x)(9 - 15/x + 25/x^2)`as
`= (3+ 5/x) [(3)^2 - (3)(5/x)+ (5/x)^2]`
` = (3)^2 + (5/x)^3`
` = (3) xx (3) xx (3) + (5/x ) xx (5/x)xx (5/x)`
` = 27 + 125/x^3`
Hence the Product value of ` (3+ 5/x)(9- 15/x + 25/x^2)`is ` 27+ 125/x^3`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Expand the following, using suitable identity:
(x + 2y + 4z)2
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Evaluate:
253 − 753 + 503
Find the square of : 3a + 7b
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a - b = 7 and ab = 18; find a + b.
Use the direct method to evaluate :
(4+5x) (4−5x)
Expand the following:
(a + 4) (a + 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Which one of the following is a polynomial?
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.