Advertisements
Advertisements
प्रश्न
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
उत्तर
In the given problem, we have to find the value of `27x^3 - 8y^3`
Given `3x- 2y= 11,xy = 12`,
In order to find `27x^3 - 8y^3`we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
`(3x - 2y)^3 = (11)^3`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 11 xx 11 xx 11`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 1331`
Here putting, 3x - 2y = 11,xy= 12
`27x^3 - 8y^3 - 18 xx 12 xx 11 = 1331`
`27x^3 -8y^3 - 2376 = 1331`
`27x^3 - 8y^3 = 1331 + 2376`
`27x^3 -8y^3 = 3707`
Hence the value of `27x^3 - 8y^3`is 3707.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Evaluate the following using suitable identity:
(102)3
Evaluate the following using identities:
(399)2
Evaluate the following using identities:
(0.98)2
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If a + b = 6 and ab = 20, find the value of a3 − b3
(a − b)3 + (b − c)3 + (c − a)3 =
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(x - 3y - 2z)2
If a - b = 10 and ab = 11; find a + b.
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Expand the following:
(–x + 2y – 3z)2
Expand the following:
`(1/x + y/3)^3`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).