Advertisements
Advertisements
प्रश्न
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
उत्तर
In the given problem, we have to find the value of `27x^3 - 8y^3`
Given `3x- 2y= 11,xy = 12`,
In order to find `27x^3 - 8y^3`we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
`(3x - 2y)^3 = (11)^3`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 11 xx 11 xx 11`
`27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 1331`
Here putting, 3x - 2y = 11,xy= 12
`27x^3 - 8y^3 - 18 xx 12 xx 11 = 1331`
`27x^3 -8y^3 - 2376 = 1331`
`27x^3 - 8y^3 = 1331 + 2376`
`27x^3 -8y^3 = 3707`
Hence the value of `27x^3 - 8y^3`is 3707.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
(0.98)2
Write in the expanded form: (-2x + 3y + 2z)2
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate:
483 − 303 − 183
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a − b = −8 and ab = −12, then a3 − b3 =
Use identities to evaluate : (998)2
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Expand the following:
(3x + 4) (2x - 1)
Find the squares of the following:
9m - 2n
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 9, xy = 20
find: x - y
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`