Advertisements
Advertisements
प्रश्न
Evaluate of the following:
(103)3
उत्तर
In the given problem, we have to find the value of numbers
Given `(130)^3`
In order to find `(130)^3` we are using identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
We can write `(130)^3`as `(100+3)^3`
Hence where a = 100 ,b = 3
`(130)^3 = (100 + 3)^3`
` =(100)^3 + (3)^3 + 3(100)(3)(100+3)`
` = 1000000 + 27 + 900 xx 103`
`= 1000000 + 27 + 92700`
` = 1092727`
The value of `(130)^3` is ` = 1092727`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Expand the following, using suitable identity:
(2x – y + z)2
Write the following cube in expanded form:
`[x-2/3y]^3`
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Write in the expanded form:
(2a - 3b - c)2
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
933 − 1073
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Evaluate:
253 − 753 + 503
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
(2x + 3y) (2x - 3y)
Simplify by using formula :
(a + b - c) (a - b + c)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
(3a – 5b – c)2
Find the following product:
(x2 – 1)(x4 + x2 + 1)