Advertisements
Advertisements
प्रश्न
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
उत्तर
In the given problem, we have to simplify equation
Given (2x − 5y)3 − (2x + 5y)3
We shall use the identity `a^3 - b^3 = (a-b)(a^2+ b^2 + ab)`
Here ` a= (2x - 5y), b = (2x + 5y)`
By applying the identity we get
` = (2x - 5y - 2x 5y)[(2x - 5y)^2 +(2x + 5y)^2 + ((2x - 5y) xx (2x + 5y))]`
` = ( 2x - 5y - 2x - 5y)[(2x xx 2x + 5y xx 5y - 2 xx 2x xx 5y) + (2x xx 2x + 5yxx 5y + 2 xx 2x xx 5y) + ( 4x^2 - 25y^2)]`
` = ( - 10y)[(4x^2 + 25y^2 - 20xy)+ (4x^2 + 25y^2 + 20xy ) + 4x^2 + 25y^2 ]`
` = ( - 10y)[4x^2 + 25y^2 - 20xy+ 4x^2 + 25y^2 + 20xy + 4x^2 -25y^2 ]`
By rearranging the variable we get,
` = ( - 10y)[4x^2 + 4x^2 + 4x^2 + 25y^2]`
` = - 10y xx [12x^2 + 25y^2]`
`= -120x^2y - 250y^3`
Hence the simplified value of `2x - 5y^3 -(2x + 5y)^3`is `-120x^2y - 250y^3`.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
(103)3
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a1/3 + b1/3 + c1/3 = 0, then
Expand the following:
(a + 4) (a + 7)
Find the squares of the following:
3p - 4q2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.