Advertisements
Advertisements
प्रश्न
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
उत्तर
`("a" + 1/"a")^2`
= `("a"^2) + 2("a") (1/"a") + (1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
⇒ 36 = `"a"^2 + (1)/"a"^2 + 2`
⇒ `"a"^2 + (1)/"a"^2`
= 34
`("a" - 1/"a")^2`
= `("a")^2 - 2("a") (1/"a") + (1/"a")^2`
= `"a"^2 + 1/"a"^2 - 2`
= 34 - 2
= 32
⇒ `"a" - 1/"a"`
= ±`sqrt(32)`
= ± 4`sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Write the following cube in expanded form:
`[3/2x+1]^3`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a + b = 7 and ab = 10; find a - b.
Expand the following:
(x - 5) (x - 4)
If x + y = 9, xy = 20
find: x - y
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.