Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
उत्तर
(x + y)3 = x3 + y3 + 3xy(x + y)
Using Identity
`[3/2x + 1]^3 = (3/2x)^3 + (1)^3 + 3(3/2x)(1)(3/2x + 1)`
= `27/8x^3 + 1 + 9/2x[3/2x + 1]`
= `27/8x^3 + 1 + 27/4x^2 + 9/2x`
= `27/8x^3 + 27/4x^2 + 9/2x + 1`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using suitable identity:
(99)3
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Evaluate of the following:
(598)3
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a1/3 + b1/3 + c1/3 = 0, then
Use identities to evaluate : (502)2
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (6 − 5xy) (6 + 5xy)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.