Advertisements
Advertisements
प्रश्न
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
उत्तर
In the given problem, we have to find Product of equations
Given (4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+ y +z)(x^2 + y^2 + z^2 - xy - yz - zx)`
` = (4x)^3 + (3y)^3 + (2z)^3 -3 (4x)(3y)(2z)`
` = (4x) xx (4x) xx (4x) +(-3y) xx (-3y) xx (-3y) + (2z) xx (2z) xx (2z) -3 (4x) (-3y)(2z)`
` = 64x^3 - 27y^3 + 8z^3 + 72 xyz`
Hence the product of (4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx) is `64x^2 - 27y^3 + 8z^3 + 72xyz`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Write the expanded form:
`(-3x + y + z)^2`
Evaluate of the following:
(598)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of 2a + b.
Use identities to evaluate : (502)2
Use the direct method to evaluate :
(x+1) (x−1)
Evaluate: (5xy − 7) (7xy + 9)
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(x + y - z)2 + (x - y + z)2
Expand the following:
(–x + 2y – 3z)2
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.