Advertisements
Advertisements
प्रश्न
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
उत्तर
Given, area of rectangle = 4a2 + 6a – 2a – 3
= 4a2 + 4a – 3 ...[By splitting middle term]
= 2a(2a + 3) – 1(2a + 3)
= (2a – 1)(2a + 3)
Hence, possible length = 2a – 1 and breadth = 2a + 3
APPEARS IN
संबंधित प्रश्न
Factorise the following:
27y3 + 125z3
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If a + b = 6 and ab = 20, find the value of a3 − b3
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the square of : 3a - 4b
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (4 − ab) (8 + ab)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If x + y = 9, xy = 20
find: x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(x + y - z)2 + (x - y + z)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`