Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
उत्तर
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (9)^2 = a^2 + b^2 + c^2 + 2(23)`
`=> 81 = a^2 + b^2 + c^2 + 46` [∵ a + b + c = 9 and (ab + bc + ca = 23)]
`=> a^2 + b^2 + c^2 = 81 - 46`
`=> a^2 + b^2 + c^2 = 35`
APPEARS IN
संबंधित प्रश्न
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
(0.98)2
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate of the following:
(99)3
Evaluate of the following:
933 − 1073
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Find the square of 2a + b.
Use the direct method to evaluate :
(x+1) (x−1)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(x - 3y - 2z)2
If x + y = 9, xy = 20
find: x - y
Simplify:
(x + y - z)2 + (x - y + z)2
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.