Advertisements
Advertisements
प्रश्न
If a − b = 4 and ab = 21, find the value of a3 −b3
उत्तर
In the given problem, we have to find the value of `a^3 - b^3`
Given `a-b = -4,ab = 21`
We shall use the identity `(a-b)^3 = a^3- b^3 - 3ab(a-b)`
Here putting, a-b = - 4,ab = 21,
`(4)^3 = a^3 - b^3 - 3 (21) (4)`
`64 = a^3 - b^3 - 252`
`64 + 252 = a^3 -b^3`
`316 = a^3 - b^3`
Hence the value of `a^3 -b^3` is 316.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Use identities to evaluate : (502)2
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate the following without multiplying:
(103)2
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Which one of the following is a polynomial?
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
`(1/x + y/3)^3`
Find the following product:
(x2 – 1)(x4 + x2 + 1)
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).