Advertisements
Advertisements
प्रश्न
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
उत्तर
Given (4x − 5y) (16x2 + 20xy + 25y2)
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 -b^3`
We can rearrange the (4x − 5y) (16x2 + 20xy + 25y2)as
` =(4x - 5y)[(4x)^2 + (4x)(5y) + (5y)^2]`
` = (4x)^3 - (5y)^3`
` = (4x) xx (4x) xx (4x) + (5y) xx (5y) xx (5y)`
` = 64x^3 - 125y^2`
Hence the Product value of ` (3x+2y)(9x^2 - 6xy + 4y^2)`is `64x^3 - 125y^3`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Evaluate the following using suitable identity:
(998)3
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
(103)3
Simplify of the following:
(x+3)3 + (x−3)3
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a1/3 + b1/3 + c1/3 = 0, then
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Simplify by using formula :
(a + b - c) (a - b + c)
If p + q = 8 and p - q = 4, find:
p2 + q2
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`