Advertisements
Advertisements
प्रश्न
If a − b = 5 and ab = 12, find the value of a2 + b2
उत्तर
We have to find the value `a^2 +b^2`
Given a-b = 5, ab = 12
Using identity `(a - b)^2 = a^2 - 2ab +b^2`
By substituting the value of a-b = 5 ,ab = 12 we get ,
`(5)^2 = a^2 +b^2 - 2 xx 12`
`5 xx 5 = a^2 +b^2 - 2 xx 12`
`25 = a^2 +b^2 -24`
By transposing – 24 to left hand side we get
`25 + 24 = a^2 +b^2`
`49 = a^2 +b^2`
Hence the value of `a^2 +b^2` is 49.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(3a – 7b – c)2
Evaluate the following using suitable identity:
(998)3
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form: (-2x + 3y + 2z)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Expand the following:
(2p - 3q)2
If x + y = 9, xy = 20
find: x2 - y2.
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If x + y = 1 and xy = -12; find:
x - y
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.