Advertisements
Advertisements
प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
उत्तर
4y2 – 4y + 1
= (2y)2 – 2(2y)(1) + (1)2
= (2y – 1)2 ...[x2 – 2xy + y2 = (x – y)2]
= (2y – 1)(2y – 1)
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
64m3 – 343n3
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use identities to evaluate : (998)2
Evaluate: 203 × 197
Expand the following:
(a + 4) (a + 7)
If x + y = 9, xy = 20
find: x2 - y2.
If p + q = 8 and p - q = 4, find:
pq
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(–x + 2y – 3z)2
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).