Advertisements
Advertisements
प्रश्न
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
उत्तर
`(2x + 1/3)^2 - (x - 1/2)^2 = [(2x + 1/3) - (x - 1/2)][(2x + 1/3) + (x - 1/2)]`
= `(2x - x + 1/3 + 1/2)(2x + x + 1/3 - 1/2)` ...[Using identity, a2 – b2 = (a – b)(a + b)]
= `(x + (2 + 3)/6)(3x + (2 - 3)/6)`
= `(x + 5/6)(3x - 1/6)`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[x-2/3y]^3`
Evaluate following using identities:
991 ☓ 1009
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form: (ab + bc + ca)2
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Find the following product:
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of 2a + b.
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate: (2 − z) (15 − z)
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.