Advertisements
Advertisements
प्रश्न
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
उत्तर
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
= (3x)2 + (2y)2 + (–4z)2 + 2(3x)(2y) + 2(2y)(–4z) + 2(–4z)(3x) ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= (3x + 2y – 4z)2
= (3x + 2y – 4z)(3x + 2y – 4z)
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form: `(x/y + y/z + z/x)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Expand the following:
(m + 8) (m - 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If p + q = 8 and p - q = 4, find:
p2 + q2
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Expand the following:
`(1/x + y/3)^3`
Simplify (2x – 5y)3 – (2x + 5y)3.