Advertisements
Advertisements
प्रश्न
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
उत्तर
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (0)^2 = 16 + 2(ab + bc + ca)` `[∵ a + b + c = and a^2 + b^2 + c^2 = 16] `
=> 2(ab + bc + ca) = -16
=> ab + bc + ca = -8
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following product without multiplying directly:
104 × 96
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify of the following:
(x+3)3 + (x−3)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: (6 − 5xy) (6 + 5xy)
Expand the following:
(a + 3b)2
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate the following without multiplying:
(103)2
Evaluate the following without multiplying:
(999)2
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Expand the following:
(–x + 2y – 3z)2