Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
पर्याय
64
14
8
2
उत्तर
In the given problem, we have to find the value of `x^3+1/x^3`
Given `x+ 1/x = 2`
We shall use the identity `(a+b)^3 = a^3 +b^3 + 3ab(a+b)`
Here putting `x+ 1/x = 2`,
`(x+ 1/x)^3 = x^3 + 1/x^3 + 3 (x xx 1/x)(x+1/ x)`
`(2)^3 = x^3 + 1/x^3 + 3 (x xx 1/x )(2)`
` 8 =x^3 + 1/x^3 + 6`
` 8-6 = x^3 + 1/x^3`
` 2= x^3 + 1/x^3`
Hence the value of `x^3 + 1/x^3` is 2.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Evaluate the following using identities:
117 x 83
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate the following:
(98)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Evaluate:
483 − 303 − 183
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
Find the square of 2a + b.
Find the square of : 3a + 7b
Evalute : `( 7/8x + 4/5y)^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Expand the following:
(a + 3b)2
Expand the following:
(x - 3y - 2z)2
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz