Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
पर्याय
196
194
192
190
उत्तर
In the given problem, we have to find the value of `x^4 + 1/x^4`
Given `x+ 1/x = 4`
We shall use the identity `(a+b)^2 = a^2 +b^2 + 2ab`
Here put,`x+ 1/x = 4`
`(x+ 1/x)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`
`(4)^2 = x^2 + 1/x^2 + 2 (x xx 1/x )`
`16 = x^2 + 1/x^2 + 2`
` 16 -2 = x^2 + 1/x^2`
`14 = x^2 + 1/x^2`
Squaring on both sides we get,
`(14)^2 = (x^2 + 1/x^2 )^2`
`14 xx 14 = (x^2)^2 + (1/x^2) ^2 + 2 xx x^2 xx 1/x^2`
`196 = x^4 + 1/x^4 + 2`
`196 -2 = x^4 + 1/x^4`
`194= x^4 + 1/x^4`
Hence the value of `x^4 + 1/x^4`is 194.
APPEARS IN
संबंधित प्रश्न
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
(99)3
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the square of : 3a + 7b
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(3b−1) (3b+1)
Expand the following:
(2p - 3q)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If x + y = 9, xy = 20
find: x2 - y2.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
1033