Advertisements
Advertisements
प्रश्न
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
उत्तर
Given \[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
We shall use the identity `(a-b)(a^2 + ab+ b^2) = a^3 - b^3`
We can rearrange the ` (3/5 - 5/y) (9^2/x^2 + 25/y^2 + 15/(xy))`as
` = ((3/x - 5/y) ((3/x)^2 + (5/y)^2 + (3/x)(5/y))`
` = (3/x)^3 - (5/y)^3 `
\[= \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) - \left( \frac{5}{y} \right) \times \left( \frac{5}{y} \right) \times \left( \frac{5}{y} \right)\]
\[ = \frac{27}{x^3} - \frac{125}{y^3}\]
Hence the Product value of `(3/x - 5/y) (9^2/x^2 + 25/y^3 + 15/(xy))`is `27/x^3 - 125/y^3`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(99)3
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use the direct method to evaluate :
(xy+4) (xy−4)
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: (9 − y) (7 + y)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Using suitable identity, evaluate the following:
9992