Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
उत्तर
Given `(3/x-2/x^2)^3`
We shall use the identity `(a-b^3 ) = a^3-b^3- 3ab(a-b)`
Here `a=3/x,b = 2/x^2`
By applying the identity we get
`(3/x-2/x^2)^3 = (3/x)^3 - (2/x^2)^3 -3 (3/x)(2/x^2)(3/x-2/x^2)`
`= 27/x^3 - 8/x^6 -3 xx3/x xx 2/x^2 (3/x - 2/x^2)`
`= 27/x^3 - 8/x^6 -18/x^3(3/x - 2/x^2)`
`= 27/x^3 - 8/x^6 -(18/x^3 xx3/x) -(18/x^3xx2/x^2)`
`= 27/x^3 - 8/x^6 -(54/x^4 +36/x^5)`
`= 27/x^3 - 8/x^6 -54/x^4 +36/x^5`
Hence cube of the binomial expression of `(3/x-2/x^2)` is `= 27/x^3 - 8/x^6 -54/x^4 +36/x^5`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Evalute : `( 7/8x + 4/5y)^2`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(x - 5) (x - 4)
Expand the following:
(2p - 3q)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate the following without multiplying:
(999)2
If a - b = 10 and ab = 11; find a + b.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`