Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x^2 + 1/x^3 = 51`
We shall use the identity `(x+y)^2 = x^2 + y^2 +2xy`
Here putting `x^2 + 1/x^3 = 51`,
`(x - 1/x)^2 = x^2 +1/x^2 - 2 xx x xx 1/x`
`(x - 1/x)^2 = x^2 +1/x^2 - 2 xx x xx 1/x`
`(x - 1/x)^2 = 51 - 2`
`(x - 1/x)^2 = 49`
`(x - 1/x) = sqrt49`
`(x - 1/x) =±7`
In order to find `x^3 - 1/x^3`we are using identity `a^3 - b^3 = (a-b)(a^2 +b^2 +ab)`
`x^3 - 1/x^3 = (x-1/x)(x^2 + 1/x^2 + x xx 1/x)`
`x^3 - 1/x^3 = (x-1/x)(x^2 + 1/x^2 + x xx 1/x)`
Here `(x-1/x)= 7`and `x^2 + 1/x^2 = 51`
`= 7 (51 +1)`
` = 7 xx 52`
` = 364`
Hence the value of `x^3 - 1/x^3`is 364.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
(a − b)3 + (b − c)3 + (c − a)3 =
If a - b = 10 and ab = 11; find a + b.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If p + q = 8 and p - q = 4, find:
pq
If p + q = 8 and p - q = 4, find:
p2 + q2
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(x + y - z)2 + (x - y + z)2
Using suitable identity, evaluate the following:
101 × 102
Factorise the following:
4x2 + 20x + 25