Advertisements
Advertisements
प्रश्न
Using suitable identity, evaluate the following:
101 × 102
उत्तर
101 × 102 = (100 + 1)(100 + 2)
= (100)2 + 100(1 + 2) + 1 × 2 ...[Using identity, (x + a)(x + b) = x2 + x(a + b) + ab]
= 10000 + 300 + 2
= 10302
APPEARS IN
संबंधित प्रश्न
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Evaluate of the following:
(9.9)3
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of : 3a + 7b
Evalute : `((2x)/7 - (7y)/4)^2`
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(a + 3b)2
Find the squares of the following:
3p - 4q2
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Simplify:
(7a +5b)2 - (7a - 5b)2
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.