Advertisements
Advertisements
प्रश्न
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
उत्तर
We have `x + 1/x = 11`
Now `(x + 1/x)^2= x^2 + (1/x)^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`
`=> (11)^2 = x^2 + 1/x^2 + 2` [∵ `x = 1/x = 11`]
`=> 121 = x^2 = 1/x^2 + 2 `
`=> x^2 + 1/x^2 = 119`
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
(2x – y + z)2
Evaluate the following using suitable identity:
(998)3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate following using identities:
991 ☓ 1009
Write in the expanded form: `(x + 2y + 4z)^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
`(10.4)^3`
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate: (9 − y) (7 + y)
Evaluate: (2 − z) (15 − z)
Evaluate: (4 − ab) (8 + ab)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2