Advertisements
Advertisements
प्रश्न
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
पर्याय
25
10
23
27
उत्तर
In the given problem, we have to find the value of `x^2 + 1/x^2 `
Given `x+ 1/x = 5`
We shall use the identity `(a+b)^2 = a^2 + b^2 + 2ab`
Here put `x+1/x = 5`
`(x+1/x)^2 = x^2 +1/x^2 +2 (x xx 1/x)`
`(5)^2 = x^2 + 1/x^2 +2 (x xx 1/x)`
`25 = x^2 + 1/x^2 + 2`
`25 - 2 = x^2 +1/x^2`
`23 = x^2 + 1/x^2`
Hence the value of `x^2 + 1/x^2` is 23.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(2x + y) (2x − y)
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Find the following product:
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Find the square of : 3a - 4b
Use identities to evaluate : (101)2
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(3b−1) (3b+1)
Expand the following:
(m + 8) (m - 7)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Expand the following:
(3a – 5b – c)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`