Advertisements
Advertisements
प्रश्न
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
उत्तर
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
= `("a" - 1)^2 - (2/"a")^2`
= `"a"^2 + 1 - 2"a" - (4)/"a"^2`
(Using identity : (a + b)(a - b) = a2 - b2).
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following:
27y3 + 125z3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
Find the square of : 3a + 7b
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)