Advertisements
Advertisements
प्रश्न
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
उत्तर
(3x – 2y) (2x + y) = (3x × 2x) + (3x × y) + (−2y × 2x) + (−2y × y)
= 6x2 + 3xy − 4xy − 2y2
= 6x2 − xy − 2y2
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a - b = 7 and ab = 18; find a + b.