Advertisements
Advertisements
प्रश्न
The product (x2−1) (x4 + x2 + 1) is equal to
पर्याय
x8 − 1
x8 + 1
x6 − 1
x6 + 1
उत्तर
We have to find the product of `(x^2 - 1)(x^4 +x^2 +1)`
Using identity `(a^3 -b ^3) = (a-b)(a^2 +ab + b^2)`
Here `a=x^2 , b = 1`
`(x^2)^3 - (1)^3 = (x^2 - 1)[(x^2)^2 + x^2 xx 1 +1^2]`
`x^6 - 1 = (x^2-1)(x^4 + x^2 + 1)`
Hence the product value of `(x^2 - 1)(x^4 +x^2 +1)` is `x^6 - 1`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Find the square of 2a + b.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
(4+5x) (4−5x)
Expand the following:
(3x + 4) (2x - 1)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Using suitable identity, evaluate the following:
9992
Factorise the following:
9y2 – 66yz + 121z2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.