Advertisements
Advertisements
प्रश्न
The product (x2−1) (x4 + x2 + 1) is equal to
विकल्प
x8 − 1
x8 + 1
x6 − 1
x6 + 1
उत्तर
We have to find the product of `(x^2 - 1)(x^4 +x^2 +1)`
Using identity `(a^3 -b ^3) = (a-b)(a^2 +ab + b^2)`
Here `a=x^2 , b = 1`
`(x^2)^3 - (1)^3 = (x^2 - 1)[(x^2)^2 + x^2 xx 1 +1^2]`
`x^6 - 1 = (x^2-1)(x^4 + x^2 + 1)`
Hence the product value of `(x^2 - 1)(x^4 +x^2 +1)` is `x^6 - 1`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of : 3a - 4b
Evalute : `((2x)/7 - (7y)/4)^2`
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Expand the following:
(x - 3y - 2z)2
If p + q = 8 and p - q = 4, find:
p2 + q2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If x + y = 1 and xy = -12; find:
x - y
Simplify:
(2x + y)(4x2 - 2xy + y2)
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6