Advertisements
Advertisements
प्रश्न
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
विकल्प
3(a + b) ( b+ c) (c + a)
3(a − b) (b − c) (c − a)
(a − b) (b − c) (c − a)
none of these
उत्तर
We have to find the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Using Identity `a^3 +b^3 +c^3 = 3abc` we get,
`(a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3 = 3(a^2 -b^2)(b^2 -c^2 )(c^2 -a^2)`
` = 3(a-b)(a +b)(b -c )(b + c )(c - a)(c +a)`
`(a-b)^3+ (b-c)^3 +(c-a)^3 = 3 (a-b) (b-c)(c-a)`
`((a^2 -b^2)^3 +(b^2 - c^2)^3 +(c^2 -a^2)^3)/((a-b)^3 +(b-c)^3 +(c-a)^3) =(3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a))/(3(a-b)(b-c)(c-a))`
` = (a+b)(b+c)(c+a)`
Hence the value of \[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\] is `(a+b)(b+c)(c+a)`.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form:
(2a - 3b - c)2
Write in the expand form: `(2x - y + z)^2`
Evaluate of the following:
(103)3
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Find the square of : 3a + 7b
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Expand the following:
`(2"a" + 1/(2"a"))^2`
If a - b = 10 and ab = 11; find a + b.
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If p + q = 8 and p - q = 4, find:
pq
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)