Advertisements
Advertisements
प्रश्न
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
विकल्प
a6 + b6
a6 − b6
a3 − b3
a3 + b3
उत्तर
We have to find the product of `(a+b)(a-b)(a^2 - ab +b^2)(a^2+ab +b^2)`
Using identity
`a^3 +b^3 = (a+b)(a^2 - ab+b^2 )`
`a^3 -b^3 = (a-b)(a^2 +ab+b^2 )`
We can rearrange as
`= (a+b)(a^2 - ab +b^2)(a-b)(a^2 +ab+ b^2)`
`= (a^3 +b^3)(a^3 - b^3)`
Again using the identity `(a+b)(a-b)= a^2 -b^2`
Here `a = a^3,b = b^3`
`(a+b)(a-b) = a^2 - b^2`
` = (a^3)^2 - (b^3)^2`
` = a^6 - b^6`
Hence the product of `(a+b)(a^2 - ab +b^2)(a-b)(a^2+ab +b^2)` is `a^6 - b^6`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Evaluate the following using identities:
117 x 83
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Find the square of : 3a + 7b
Use identities to evaluate : (502)2
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Expand the following:
(m + 8) (m - 7)
Expand the following:
(x - 3y - 2z)2
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate the following without multiplying:
(1005)2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)