Advertisements
Advertisements
प्रश्न
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
उत्तर
We have to find the value of `a - 1/a`
Given `a^2+1/a^2 = 102`
Using identity `(x-y)^2 = x^2 +y^2 - 2xy`
Here `x=a,y = 1/a`
`(a-1/a )^2 = a^2 + (1/a)^2 - 2xx a xx 1/a`
`(a-1/a )^2 = a^2 + 1/a^2 - 2xx a xx 1/a`
By substituting `a^2 + 1/a^2 = 102` we get
`(a-1/a)^2 = 102 -2`
`(a-1/a)^2 = 100`
`(a-1/a )(a-1/a) = 10 xx 10`
`(a-1/a) = 10`
Hence the value of `a-1/a` is 10.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
(3a – 7b – c)2
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1113 − 893
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
(a − b)3 + (b − c)3 + (c − a)3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: (2 − z) (15 − z)
Find the squares of the following:
9m - 2n
Evaluate the following without multiplying:
(1005)2
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
The value of 2492 – 2482 is ______.