Advertisements
Advertisements
प्रश्न
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
उत्तर
Given `3x+2y = 20,xy = 14/9`
On cubing both sides we get,
`(3x+ 2y)^3 = (20)^3`
We shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`27x^3 + 8y^3 + 3(3x)(2y)(3x+2y) = 20 xx 20 xx 20`
`27x^3 + 8y^3 + 18 (xy)(3x+ 2y)= 8000`
`27x^3 + 8y^3 + 18 (14/9)(20) = 8000`
` 27x^3 + 8y^3 = 8000 - 560`
`27x^3 + 8y^3 = 7440`
Hence the value of ` 27x^3 + 8y^3 `is 7440 .
APPEARS IN
संबंधित प्रश्न
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate of the following:
(9.9)3
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Find the square of 2a + b.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
`(2"a" + 1/(2"a"))^2`
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate the following without multiplying:
(1005)2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Find the following product:
(x2 – 1)(x4 + x2 + 1)