Advertisements
Advertisements
प्रश्न
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
उत्तर
From given problem we have to find the value of `64x^3 - 125z^3`
Given `(4x- 5z) = 16,xz = 12`
On cubing both sides of `(4x- 5z) = 16 ` we get
`(4x- 5z^3) = (16)^3`
We shall use identity `(a-b)^3 = a^3 - b^3 - 3ab(a-b)`
`4x^3 - 125z^3 - 3 (4x)(5z)(4x-5z) = 16 xx 16 xx16`
`64x^3 - 125z^3 - 60(xz) (16) = 4096`
`64x^3- 125z^3 - 60(12)(16) = 4096`
`64x^3 - 125z^3 - 11520 = 4096`
`64x^3 - 125z^3 = 4096 +11520`
`64x^3 - 125z^3 =15616 `
Hence the value of `64x^3 - 125z^3` is . 15616.
APPEARS IN
संबंधित प्रश्न
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form:
`(a + 2b + c)^2`
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
Use identities to evaluate : (97)2
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If p + q = 8 and p - q = 4, find:
pq
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Expand the following:
(3a – 5b – c)2
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4