Advertisements
Advertisements
प्रश्न
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
उत्तर
From given problem we have to find the value of `64x^3 - 125z^3`
Given `(4x- 5z) = 16,xz = 12`
On cubing both sides of `(4x- 5z) = 16 ` we get
`(4x- 5z^3) = (16)^3`
We shall use identity `(a-b)^3 = a^3 - b^3 - 3ab(a-b)`
`4x^3 - 125z^3 - 3 (4x)(5z)(4x-5z) = 16 xx 16 xx16`
`64x^3 - 125z^3 - 60(xz) (16) = 4096`
`64x^3- 125z^3 - 60(12)(16) = 4096`
`64x^3 - 125z^3 - 11520 = 4096`
`64x^3 - 125z^3 = 4096 +11520`
`64x^3 - 125z^3 =15616 `
Hence the value of `64x^3 - 125z^3` is . 15616.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise the following:
27 – 125a3 – 135a + 225a2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(598)3
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Evaluate:
253 − 753 + 503
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Find the squares of the following:
9m - 2n
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If x + y = 1 and xy = -12; find:
x2 - y2.
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`