Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(–2x + 3y + 2z)2 = (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify `(a + b + c)^2 + (a - b + c)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Find the following product:
Find the following product:
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a + b = 7 and ab = 10; find a - b.
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz