Advertisements
Advertisements
Question
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Solution
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(–2x + 3y + 2z)2 = (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
933 − 1073
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Find the squares of the following:
3p - 4q2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`