Advertisements
Advertisements
Question
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Sum
Solution
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
= `("a")^2 + (1/"a")^2 - 2("a") (1/"a") + ("a")^2 + (1/"a")^2 + 2("a")(1/"a")`
= `"a"^2 + (1)/"a"^2 - 2 + "a"^2 + (1)/"a"^2 + 2`
= `2"a"^2 + (2)/"a"^2`.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(x + 2y + 4z)2
Write in the expanded form (a2 + b2 + c2 )2
Simplify of the following:
\[\left( \frac{x}{2} + \frac{y}{3} \right)^3 - \left( \frac{x}{2} - \frac{y}{3} \right)^3\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Find the square of 2a + b.
Find the square of : 3a + 7b
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Expand the following:
(3a – 2b)3