Advertisements
Advertisements
Question
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Solution
In the given problem, we have to find the value of `x^2 - 1/x^3`
Given `x^4 + 1/x^4 = 119`
We shall use the identity `(x+y)^2 = x^2 + y^2 + 2xy`
Here putting, `x^4 + 1/x^4 = 119`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^3 = x^4 + 1/x^2 + 2`
`(x^2 + 1/x^2)^2= 119 + 2`
`(x^2 + 1/x^2)^2 = 121`
`x^2 + 1/x^2^2 = sqrt(11 xx 11)`
`x^2 + 1/x^2^2 = ±11`
In order to find `(x-1/x)`we are using identity `(x-y)^2 = x^2 + y^2 - 2xy`.
\[\left( x - \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} - 2 \times x \times \frac{1}{x}\]
`(x-1/x)^2 = x^2 + 1/x^2 - 2`
`(x-1/x)^2 =11 - 2`
`(x-1/x)^2 = 9`
`(x-1/x) =sqrt9`
`(x-1/x)=sqrt9`
`(x-1/x) =sqrt(3 xx 3)`
`(x-1/x)= ± 3 `
In order to find `x^3 - 1/x^3` we are using identity `a^3 - b^3 = (a-b)(a^2 + b^2 + ab)`
`x^3 - 1/x^3 = (x- 1/x)(x^2 + 1/x^2 + x xx 1/x)`
+ x xx )`Here `x^2 + 1/x^2 = 11` and `(x - 1/x) = 3`
`x^3 - 1/x^3 = (x-1/x)(x^2+ 1/x^2 + x xx 1/x)`
` = 3(11+1)`
` = 3 xx 12`
` = 36`
Hence the value of `x^3 - 1/x^3`is 36.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Evaluate the following using identities:
(0.98)2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Evaluate of the following:
1113 − 893
If a + b = 8 and ab = 6, find the value of a3 + b3
Use identities to evaluate : (97)2
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y = 1 and xy = -12; find:
x - y
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`