Advertisements
Advertisements
Question
Evaluate the following using identities:
(0.98)2
Solution
We have
(0.98)2 = [1 - 0.02]2
= (1)2 + (0.02)2 - 2 x 1 x 0.02
= 1 + 0.0004 - 0.04 [∵ a = 1, b = 0.02]
= 1.0004 - 0.04
= 0.9604
∴ (0.98)2 = 0.9604
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Write in the expanded form:
`(2 + x - 2y)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Evaluate of the following:
1113 − 893
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate:
253 − 753 + 503
Evaluate:
483 − 303 − 183
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If a1/3 + b1/3 + c1/3 = 0, then
If a + b = 7 and ab = 10; find a - b.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(2a+3) (2a−3)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`