Advertisements
Advertisements
Question
Write in the expanded form:
`(2 + x - 2y)^2`
Solution
We have,
(2 + x - 2y)2 = [2 + x + (-2y)]2
= (2)2 + x2 + (-2 y)2 + 2(2)( x) + 2( x)(-2 y) + 2(2)(-2y )
[ ∵ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
`=a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2a^2c^2`
`∴ (a^2 + b^2 + c^2)^2 = a^4 + b^4 + c^4 + 2a^2b^2 + 2b^2c^2 + 2a^2c^2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form (a2 + b2 + c2 )2
Write in the expand form: `(2x - y + z)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a1/3 + b1/3 + c1/3 = 0, then
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Evaluate: (2 − z) (15 − z)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Using suitable identity, evaluate the following:
9992
Expand the following:
(3a – 5b – c)2