Advertisements
Advertisements
Question
Solution
Given \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`
Let Take `a= 1/2 , b= 1/3, c= - 5/ 6`
`a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`
`a^3 + b^3 + c^3 = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
Applying least common multiple we get,
`a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = ((1xx6)/(2xx6) + (1xx4)/(3xx 4) - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = (6/12 + 4/12 - 10/12)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc `
`a^3 + b^3 + c^3 =0 (a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = +3abc`
`(1/2)^3 + (1/3)^3 - (5/6)^3 = 3 xx 1/2 xx 1/3 xx - 5/6`
` = 3 xx 1/2 xx 1/3 xx -5/6`
` = -5/12`
Hence the value of \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]is`-5/12`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Evaluate the following product without multiplying directly:
95 × 96
Evaluate the following using suitable identity:
(998)3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
Evaluate:
253 − 753 + 503
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(m + 8) (m - 7)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)