English

Evaluate: ( 1 2 ) 3 + ( 1 3 ) 3 − ( 5 6 ) 3 - Mathematics

Advertisements
Advertisements

Question

Evaluate:
\[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]
Answer in Brief

Solution

Given \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]

We shall use the identity  `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`

Let Take  `a= 1/2 , b= 1/3, c= - 5/ 6`

   `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`

`a^3 + b^3 + c^3  = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca) + 3abc`

              `a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2  +b^2 + c^2 - ab - bc - ca)+3abc`

Applying least common multiple we get,

              `a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2  +b^2 + c^2 - ab - bc - ca)+3abc`

              `a^3 + b^3 + c^3 = ((1xx6)/(2xx6) + (1xx4)/(3xx 4) - 5/6)(a^2  +b^2 + c^2 - ab - bc - ca)+3abc`

               `a^3 + b^3 + c^3 = (6/12 + 4/12 - 10/12)(a^2  +b^2 + c^2 - ab - bc - ca)+3abc `

`a^3 + b^3 + c^3 =0 (a^2  +b^2 + c^2 - ab - bc - ca)+3abc`

                         `a^3 + b^3 + c^3 = +3abc`

`(1/2)^3 + (1/3)^3 - (5/6)^3 = 3  xx 1/2 xx 1/3 xx - 5/6`

                                              ` = 3 xx 1/2 xx 1/3 xx -5/6`

                                              ` = -5/12`

Hence the value of  \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]is`-5/12`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.5 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.5 | Q 2.3 | Page 29

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×