Advertisements
Advertisements
Question
Solution
Given (0.2)3 − (0.3)3 + (0.1)3
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab -bc-ca)`
Let Take a = 0.2,b=0.3 ,c=0.1
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)+3abc`
\[a^3 + b^3 + c^3 = \left( 0 . 2 - 0 . 3 + 0 . 1 \right)\left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
\[a^3 + b^3 + c^3 = 0 \times \left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
`a^3+b^3+c^3 = +3abc`
`(0.2)^3 - (0.3)^3 + (0.1)^3 = 3 xx 0.2 xx 0.3 xx 0.1`
` = -0.018`
Hence the value of (0.2)3 − (0.3)3 + (0.1)3 is -0.018.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Evaluate of the following:
933 − 1073
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Expand the following:
(3x + 4) (2x - 1)
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(x + y - 3) (x + y + 3)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Expand the following:
(4a – b + 2c)2
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).