Advertisements
Advertisements
Question
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Options
4
- \[\frac{17}{4}\]
- \[\frac{13}{4}\]
- \[\frac{1}{4}\]
Solution
In the given problem, we have to find the value of `x+1/x`
Given `x- 1/x = 15/4`
We shall use the identity `(a-b)^2 = a^2 +b^2 - 2ab`
Here putting`x-1/x =15/4`,
`(x-1/x)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`(15 /4)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`225/16 = x^2 +1/x^2`
`225/16 +2 = x^2 +1/x^2`
`225/16 + (2 xx 16) /(1 xx 16) = x^2 +1/x^2`
`(225+32)/16 = x^2 +1/x^2`
`257/16 = x^2 +1/x^2`
Substitute `257/16 = x^2 +1/x^2` in `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = (x)^2 + (1/x)^2 +2 (x xx 1/x)`
`(x+1/x)^2 = (x)^2 + (1/x)^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = x^2 +1/x^2 +2`
`(x+1/x)^2 = 257/16+2`
`(x+1/x)^2 = 257/16 + (2 xx 16)/(1 xx 16)`
`(x+1/x^2 )^2= (257+32)/16`
`(x+1/x)^2 = 289/16`
`(x+1/x) xx (x+1/x) = (17 xx 17)/(4 xx 4)`
`(x+1/x) = 17/4`
Hence the value of `x+1/x` is `17/4`.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(2x – y + z)2
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate of the following:
(103)3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b = 8 and ab = 6, find the value of a3 + b3
Evaluate:
483 − 303 − 183
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Find the square of : 3a + 7b
If a + b = 7 and ab = 10; find a - b.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: 20.8 × 19.2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(7a +5b)2 - (7a - 5b)2
Which one of the following is a polynomial?