Advertisements
Advertisements
Question
Evaluate:
483 − 303 − 183
Solution
Given 483 − 303 − 183
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 +b^2 + c^2 - ab - bc+ ca)`
Let Take a= 48 , b = 30,c =-18
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 - 3abc = (48+30+18)(a^2 +b^2 + c^2 - ab - ab - ca)+3abc`
`a^3 + b^3 +c^3 = 0 xx (a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 = + 3abc`
`48^3 - 30^3 - 18^3 = 3xx 48 xx -30 xx -18`
= 77760
Hence the value of `25^3 - 75^3 + 50^3`is 77760.
APPEARS IN
RELATED QUESTIONS
Factorise the following:
64m3 – 343n3
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Evaluate the following using identities:
(399)2
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Write in the expanded form:
`(a + 2b + c)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1113 − 893
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Evaluate: (6 − 5xy) (6 + 5xy)
If a - b = 10 and ab = 11; find a + b.
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
Expand the following:
`(1/x + y/3)^3`
Find the following product:
(x2 – 1)(x4 + x2 + 1)