Advertisements
Advertisements
प्रश्न
Evaluate:
483 − 303 − 183
उत्तर
Given 483 − 303 − 183
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 +b^2 + c^2 - ab - bc+ ca)`
Let Take a= 48 , b = 30,c =-18
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 - 3abc = (48+30+18)(a^2 +b^2 + c^2 - ab - ab - ca)+3abc`
`a^3 + b^3 +c^3 = 0 xx (a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 = + 3abc`
`48^3 - 30^3 - 18^3 = 3xx 48 xx -30 xx -18`
= 77760
Hence the value of `25^3 - 75^3 + 50^3`is 77760.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If a - b = 7 and ab = 18; find a + b.
Evaluate: (5xy − 7) (7xy + 9)
Expand the following:
(2p - 3q)2
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If a - b = 10 and ab = 11; find a + b.
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Simplify (2x – 5y)3 – (2x + 5y)3.
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.