Advertisements
Advertisements
प्रश्न
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
उत्तर
In the given problem, we have to find the value of `8x^3 + 27y^3`
Given`2x + 3y = 13, xy = 6`
In order to find `8x^3 + 27y^3`we are using identity `(a+b )^3 = a^3 + b^3 + 3ab(a+b)`
`(2x + 3y )^3 = (13)^3`
`8x^3 + 27 y^3 + 3 (2x)(3y)(2x+ 3y)= 2197`
` 8x^3 + 27y^3 + 18xy (2x+ 3y) = 2197`
Here putting, `2x + 3y = 13, xy = 6`
`8x^3 + 27y^3 + 18 xx 6 xx 13 = 2197`
` 8x^3 + 27y^3 + 1404 = 2197`
` 8x^3 + 27y^3 = 2197 - 1404`
`8x^3+ 27y^3 = 793`
Hence the value of `8x^3 + 27y^3` is 793.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Evaluate the following using suitable identity:
(99)3
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(9.9)3
Evaluate of the following:
(99)3
Find the following product:
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz